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Summary. The removal and storage of topsoil decreases 
the infectivity of vesicular-arbuscular mycorrhizal 
(VAM) fungi. The propagules of VAM fungi include 
spores, root fragments containing hyphae and vesicles, 
and soil hyphae. The viability of each type of propagule 
after disturbance will determine the initiation of VAM 
associations with plants recolonizing the disturbed site. 
This study aimed to examine which of the propagules of 
VAM fungi are capable of initiating VAM infection aft- 
er soil disturbance. Soil from an open woodland site of 
low soil fertility, in southeastern Australia was wet- 
sieved through a tier of three sieves (1 ram, 250 gm and 
106 ~tm), and the following fractions were extracted: (i) 
root fragments, (ii) fungal hyphae, and (iii) VAM 
spores. Each fraction was tested to determine its poten- 
tial to initiate VAM. Hyphae of VAM fungi grew from 
root fragments within 14 days. The VAM spore fraction 
initiated VAM infection after 28 days. VAM hyphal 
fragments did not produce any VAM infection even aft- 
er 42 days. 

Key words: Topsoil disturbance - VAM fungi - Colo- 
nized root fragments - VAM hyphae - Spores 

Introduction 

The removal and storage of topsoil decreases the infec- 
tivity of vesicular-arbuscular mycorrhizal (VAM) fungi 
(Moorman and Reeves 1979; Abbott and Robson 1991). 
The propagules of VAM fungi are blastospores, chlamy- 
dospores or azygospores (resting spores), soil-borne ves- 
icles and mycelia or colonized root fragments containing 
hyphae and vesicles (Daniels and Skipper 1982). These 
propagules have been shown to have different suscepti- 
bilities both to the direct impacts of topsoil disturbance, 
and also to the associated changes in the soil environ- 
ment (e.g. Stahl et al. 1988; Jasper et al. 1989a). The 
viability of each type of propagule after soil disturbance 
will determine in part the number of infective propa- 

gules available to initiate VAM with plants recolonizing 
the disturbed site. 

Soil-borne spores have been considered to be the 
most important type of propagule of VAM fungi (Brun- 
drett 1991). However, soils in a range of ecosystems oft- 
en contain low numbers of living spores (e.g. Read et al. 
1976; Janos 1980; Gay et al. 1982; Visser et al. 1984; 
Brundrett and Kendrick 1988; Bellgard, in preparation). 
Some species of VAM fungi apparently do not produce 
spores (e.g. Johnson 1977; McGee 1989). The successful 
germination of VAM spores is dependent upon interac- 
tions with a range of soil and environmental factors 
(e.g. Slankis 1974; Schenck et al. 1975; Black and Tink- 
er 1979; Daniels and Trappe 1980; Tommerup 1983a, 
1984; McGee 1989), but living spores of VAM fungi will 
not function as propagules if they are quiescent (Tom- 
merup 1983b, 1985). Blastospores of VAM fungi, be- 
cause of their lipid content and thick walls, are consid- 
ered to be more resistant to adverse environmental con- 
ditions than other VAM propagules (Daniels Hetrick 
1984; Abbott and Robson 1991). Tommerup and Kidby 
(1979) demonstrated that some species of Glomus and 
Gigaspora can remain infective after lyophilization. In 
comparison, Scutellospora calospora did not recover 
after one wet/dry cycle (McGee 1989). Consequently, it 
is reasonable to conclude that the importance of spores 
as a source of inoculum varies between sites and is de- 
pendent upon a range of variables, including the species 
of endophyte, the abundance of the endophyte, and the 
local soil and environmental conditions. 

Non-spore propagules, such as roots colonized by 
VAM fungi (containing hyphae and vesicles), can ini- 
tiate VAM, provided they are in close proximity to an 
actively growing root (e.g. Rives et al. 1980; McGee 
1987). Tommerup and Abbott (1981) demonstrated that 
root pieces colonized by several species of VAM fungi 
retained their infective potential even when stored in dry 
soil at - 50 MPa. It is not known whether storage under 
humidities more conducive to root decomposition or to 
root desiccation might result in loss of viability of hy- 
phal fragments contained in root pieces (Daniels Hetrick 
1984; Miller 1987). Thus, the ability of colonized root 
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fragments  to func t ion  as propagules  of infect ion may 
vary bo th  between species of VAM fungi  and  the specif- 
ic site and  storage condi t ions  (Nemec 1987; McGee 
1989). 

P lan t  roots infected with VAM fungi  carry a loose 
hyphal  ne twork  extending into the su r round ing  soil 
which provides an  extensive surface area for absorp t ion  
of nut r ien ts  and a mechanism by which infect ion can be 
spread (Warner  and  Mosse 1983; N e w m a n  1988). The 
external hyphal  ne twork  is considered to be a par t icular-  
ly signif icant  source of infect ion in und i s tu rbed  soils 
conta in ing  low densities of  living spores (e.g. Read et al. 
1976; Read et al. 1985; Jasper et al. 1989a). It is clear 
that  the hyphal  ne twork  can colonize host  roots more  
efficiently than  spore i nocu lum (e.g. Powell  1976; Hal l  
1976, 1979; A b b o t t  and  Robson  1981). However,  the 
hyphal  ne twork  may  be more  susceptible to the impact  
of soil d is turbance  than  the more  robus t  forms of inocu-  
lure, viz spores and  colonized root  f ragments  (Jasper et 
al. 1989a). 

In  a previous s tudy which examined the impact  of  in- 
creasing degrees of topsoil  d is turbance  on  the infectivity 
of  VAM fungi  (Bellgard, in prepara t ion) ,  coloniza t ion  
of  roots by VAM fungi  was delayed by up to 6 weeks in 
the roots of  seedlings grown in severely dis turbed soil 
blocks. It was concluded that  severe soil d i s turbance  
p robab ly  disrupted the external hyphal  ne twork  and  the 
colonized root  f ragments ,  thus delaying root  infect ion.  
The delay observed in the in i t ia t ion  of VAM in the seed- 
lings growing in the severely dis turbed soil blocks was 
explained by the t ime required for hyphae to grow to the 
bioassay roots f rom other propagules  r emain ing  viable 
in the soil blocks.  The aim of the present  study was to 
ident ify which propagules  of  VAM fungi  are capable of  
ini t ia t ing V A M  after topsoil  d is turbance.  

Materials and methods 

Description of  the study site 

The southern part of the Hawkesbury Sandstone plateau, located 
90 km south of Sydney and to the west of Wollongong, Australia, 
covers approximately 1200 km 2. The average annual precipitation 
in this region is 1420 mm, with a slight summer predominance in 
distribution. The study site was a 100-ha area located within the 
Avon Catchment (34~ 150~ of the Sydney Water Board. 
The vegetation of the site was a woodland with an overstorey of 
Eucalyptus haemostoma Sm. and E. racemosa Cav. (Myrtaceae), 
and a shrub understorey comprising a variety of genera including 
Acacia, Banksia, Grevillea and Isopogon. The soil at the site was 
30 cm of yellow clayey subsoil overlain by 20 cm of loamy sand 
topsoil [Yellow earths (Gn2.21)l (Hazelton and Tille 1990). 

Experimental design 

Five different plots within the site were selected at random and 
three intact soil blocks (20x20x15cm) were taken from each 
plot. These blocks were placed in square, 6-1 plastic containers. 
For each plot, two containers were divided longitudinally into 25 
equal portions and the third was left undisturbed. 

Experiment I -  VAM formation in undisturbed 
versus disturbed soil blocks 

Forty seeds of Trifolium repens L. were sown into one of the dis- 
turbed blocks and the undisturbed block from each plot. The re- 
maining disturbed soil block from each plot was used in experi- 
ment II. The undisturbed block was assayed to ensure that the soil 
samples were potentially infective. To test for potential aerial con- 
tamination in the glasshouse by VAM fungi, five pots of washed 
river sand sown with 20 seeds of T. repens were used as a control. 
Ten seedlings were randomly extracted from each container 14, 28 
and 42 days after sowing. The roots of each seedling were washed 
in a 0.4% sodium hexametaphosphate solution to remove any ad- 
hering soil. Roots were fixed in 50% ethanol, cleared and stained 
(Kormanick et ak 1980), and both the total root length and por- 
tion of root length colonized by VAM fungi were measured 
(Ambler and Young 1977). The length of root length colonized by 
VAM fungi (i.e. VAM length) is a composite index, i.e. the sum of 
the length of root colonized by vesicles, arbuscules and internal 
hyphae (N.B. % VAM = VAM length/total root length x 100). 

Experiment H - isolation of  inoculum fractions 
and examination o f  potential infectivity 

The remaining disturbed-soil blocks from the five plots were sepa- 
rated into their constituent 25 soil columns. Five columns of the 
25 were randomly selected from each block and individually 
washed through a tier of three sieves: (I) 1 ram, (II) 250 gm, and 
(III) 106 gin. The material caught on the l-ram, 250-, and 106-gin 
sieves was sprayed with a strong jet of water in an attempt to re- 
move any hyphae adhering to the root fragments. Cursory exami- 
nation of a randomly selected sub-sample of root fragments con- 
firmed that this technique successfully removed the majority of 
adhering soil hyphae from the root surface. The sieved fractions 
were examined under a dissecting microscope and divided into 
root fragments and fungal hyphae. The root fragments and the 
hyphae from each of the three sieve fractions were bulked. 

The spores on the 106-gin sieve were not separated from the 
fine soil and this was termed the "spore/soil" fraction. The frac- 
tion caught in a collecting vessel below the tier of three sieves (i.e. 
< 106 gm) was termed the "fines" fraction. The four fractions - 
roots, hyphae, spore/soil and fines - were each examined for po- 
tential infectivity. 

Root fragments 

The ability of hyphae to grow from root fragments was tested us- 
ing a "membrane filter" technique (Tommerup and Kidby 1979). 
This involved sandwiching at least five root pieces between a pair 
of 0.45-~tm membrane filters (Millipore Corp.) which are inserted 
between 1-cm layers of steamed river sand. The steamed sand was 
wetted to field capacity and incubated at 22 ~ C. Three "blanks" 
containing a clean pair of membrane filters sandwiched between 
steamed sand were used as a control to monitor potential contam- 
ination. Twelve randomly chosen samples of root fragments (each 
sample containing five root fragments between 1 and 6 mm in 
length) were selected from each of the soil columns. Four random- 
ly selected filter-sandwiches from soil column were examined after 
14, 28 and 42 days. Each pair of filters was recovered and the root 
fragments stained in place on the filters (Tommerup and Kidby 
1979) with 0.01% acid fuchsin (Kormanick et ai. 1980). 

Hyphal fragments 

The viability of hyphal fragments was tested using the "soil-fun- 
nel" technique (Menge and Timmer 1982). Here, seedlings are 
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forced to grow in close proximity to VAM fungal inocula, thus 
optimizing the chance of initiating an association. At least ten hy- 
phal fragments were used as inocula in each apparatus. Six ran- 
domly chosen samples of VAM fungal hyphae (each sample con- 
taining at least 10 hyphal pieces, 3-6 mm long) were chosen from 
each soil column. Ten seeds of T. repens were sown into each fun- 
nel setup, which were placed in a glasshouse with natural light and 
watered daily without nutrients. The diurnal temperature range in 
the glasshouse for the duration of this experiment between 17 
June and 28 July 1991 was 18.4-25.4 o C. To monitor for potential 
aerial contamination in the glasshouse by VAM fungi, five funnel 
setups with 10 seeds of T. repens and no VAM hyphae were used 
as a control. Plants from two entire funnel setups from each soil 
column were harvested 14, 28 and 42 days after sowing. Plants 
were removed from the funnels and their roots washed in a 0.4% 
sodium hexametaphosphate solution to remove any adhering soil. 
The roots were fixed in 50% ethanol, cleared and stained and the 
proportion of root length colonized by VAM fungi was quantif- 
ied. 

Spore~soil and f ines fraction 

The ability of the spore/soil and the fines fraction to initiate VAM 
infection was tested by bioassay. The two fractions were put into 
10-cm plastic pots placed on gravel to prevent the fine soil from 
washing through. Twenty T. repens seeds were sown into the frac- 
tions. The pots were placed in a naturally lit glasshouse and water- 
ed daily without nutrients. The diurnal temperature range in the 
glasshouse for the duration of this experiment between 17 June 
and 28 July 1991 was 18.4-25.4 ~ C. To monitor for potential aer- 
ial contamination in the glasshouse by VAM fungi a further five 
pots of river sand sown with 20 seeds of T. repens were used as a 
control. Five plants were harvested from each pot after 14, 28 and 
42 days. The plants were removed from the pots and their roots 
washed in a 0.4% sodium hexametaphosphate solution to remove 
any adhering soil. The roots were fixed in 50% ethanol, cleared 
and stained and the proportion of root length colonized by VAM 
fungi was quantified. 

Table 1. Chi-square analysis of root fragments extracted from soil 
blocks taken from the Avon study site in southeastern Australia. 
Data represent the number of root fragments out of 100 from 
which hyphae were produced 

Time since start of assay (day) 

14 28 42 

Block 1 
Hyphae produced 56 47 68 
No hyphae produced 44 53 32 
Z2= 9.06, P=0.011 a 

Block 2 
Hyphae produced 46 54 63 
No hyphae produced 54 46 37 
Z 2 = 5.83, P = 0.054 u 
Block 3 
Hyphae produced 52 51 60 
No hyphae produced 48 49 40 
X 2= 1.96, P=0.375 b 

Block 4 
Hyphae produced 51 48 53 
No hyphae produced 49 52 47 
Z2=0.51, P =  0.776 b 

Block 5 
Hyphae produced 52 48 56 
No hyphae produced 48 52 44 
X2= 1.28, P=0.527 b 

a Reject null hypothesis 
b Accept null hypothesis 

soil blocks (22=36 .97 ,  P _ 0 . 0 0 0 1 ) .  Addi t ional ly ,  a 
higher p ropor t ion  of the total  root  length of plants  was 
mycorrhizal  f rom und is tu rbed  soil (20%) than  dis turbed 
soil (7%) ( t - 9 . 8 6 ,  P_<0.001). 

Statistical analysis 

A chi-square statistic (Zar 1984) was used to determine if the num- 
bers of seedlings colonized by VAM at day 42 in the intact and 
disturbed soil treatments were independent. An unpaired, two- 
tailed t-test (Zar 1984) was used to determine if the mean propor- 
tion of root length colonized by VAM fungi after 42 days differed 
in intact- and disturbed-soil blocks. The growth of hyphae from 
root fragments was designated either "success" (i.e. hyphae grew 
from the root fragments) or "failure" (i.e. no hyphae grew from 
the root fragments). Chi-square contingency tables were used to 
determine whether the frequencies of "successes" versus "failures" 
were independent of sampling dates. 

Root  fragments 

Hyphae  had grown f rom the root  f ragments  after 14 
days. In  all cases, the hyphae  produced  were s t ra ight ,  
thick-walled,  aseptate, 4-8 ~tm in length and  did no t  
b ranch .  In  four  out  of the five soil blocks sampled,  hy- 
phae had grown f rom a similar n u m b e r  of root  frag- 
ments  at each harvest  (Table 1). 

Hyphal  fragments 

Results  

V A M  formation in intact versus disturbed soil blocks 

No VAM were found  in any  of the controls  mon i to r ing  
for glasshouse c o n t a m i n a t i o n  at any  of  the harvests.  
VAM fo rma t ion  had commenced  by 14 days in the in- 
tact-soil  blocks and  in the roots of seedlings growing in 
the dis turbed-soi l  blocks after 42 days. At  42 days, the 
n u m b e r  of seedlings colonized by VAM was significant-  
ly higher in the intact-soil  blocks than  in the dis turbed-  

Soil collected f rom the A v o n  site conta ined  13.0 + 1.5 m 
of fungal  hyphae  per gram of soil at field capacity 
( m e a n + S E M ,  n = 2 5 ) .  This estimate does not  include 
hyphal  f ragments  smaller t han  1 0 6 g m  which went 
th rough the sieve. 

No V A M was found  in the control  funnels  used to 
mon i t o r  for aerial con t amina t ion .  At  each of the three 
sampl ing dates, the hyphal  f ragments  failed to produce  
any  V A M in the roots of the bioassay plants.  



150 

Spore~soil and fines fraction 

No VAM was found in the controls at any of the sam- 
pling times. The spore fraction produced VAM infection 
at the 42-day harvest. At 42 days, 53 of the 150 seedlings 
sampled were colonized by VAM. The mean proportion 
of root length colonized by VAM fungi was 
4.85-+0.62% (mean_+SEM, n=150). VAM were not 
formed in the fines fraction from any of the three sam- 
pling occasions. 

Discussion 

Soil disturbance can reduce the infective potential of 
VAM fungi in several ways: (I) propagules may be phy- 
sically damaged, i.e. spores may be crushed and/or the 
soil hyphal network and colonized root fragments may 
be disrupted (Jasper et al. 1989a; Evans and Miller 
1990); (II) disturbance may alter the physical, chemical, 
or biological environment of the soil, which in turn pre- 
vents the colonization by or germination of VAM pro- 
pagules (Warner 1983; Stahl et al. 1988); (III) distur- 
bance may eliminate host plants, leading to changes in 
the carbon supply available to the fungus (Abbott and 
Robson 1991). Brundrett (1991) commented that the re- 
lative importance of these mechanisms has not yet been 
fully established. Additionally, individual fungal species 
may exhibit different responses to both the direct and 
indirect impacts of soil disturbance, depending upon 
their own specific host and environmental require- 
ments. 

Seedlings growing in the undisturbed topsoil blocks 
of experiment I were rapidly colonized by VAM fungi. 
This implies that VAM fungi inoculum levels in this soil 
were high. Read et al. (1976) observed rapid VAM de- 
velopment in various grassland, shrub and woodland 
species. The rapid colonization of roots was attributed 
to seedling roots intercepting colonized roots of estab- 
lished plants rather than infection from spores, which 
were found to occur in low numbers. In a similar way, 
the infections which were observed in 2-week-old seed- 
lings in the present study are believed to be indicative of 
infection from roots colonized by VAM fungi and their 
associated hyphal network. 

Cutting the soil blocks longitudinally into 25 equal- 
sized portions temporarily reduced the infective poten- 
tial of VAM fungi to nil. These results reinforce the 
findings of my earlier study (Bellgard, in preparation), 
in which colonization of roots by VAM fungi was de- 
layed by up to 6 weeks for seedlings growing in soil 
blocks which were cut longitudinally into 25 equal por- 
tions. Colonization of roots by VAM fungi had com- 
menced by the 42-day harvest. The delay in the initiation 
of infection may be due to the time required for hyphae 
to grow from propagules in the soil which survived both 
the direct impact of the disturbance and the associated 
changes to the soil environment. 

Root fragments produced hyphae after 14 days. Sim- 
ilarly, McGee (1987) demonstrated that outgrowth of 
VAM fungi from dried root pieces occurred by 14 days. 

The studies of Powell (1976), Warner and Mosse (1980), 
Tommerup and Abbott (1981) and Biermann and Lin- 
derman (1983) did not determine when hyphae first 
emerged from colonized root fragments. However, the 
hyphae produced from the colonized root fragments ini- 
tiated VAM infection in bioassay plants within 28-60 
days. It is reasonable to conclude that outgrowths of hy- 
phae from colonized root pieces may have been respon- 
sible in part for the initiation of infection in the dis- 
turbed soil blocks of experiment I. 

Hyphal fragments failed to initiate VAM infection 
even after 42 days. A number of authors have demon- 
strated that disruption of the soil hyphal network results 
in a decrease in the infectivity of VAM fungi (e.g. Fair- 
child and Miller 1988; Jasper et al. 1989a, b; Evans and 
Miller 1990). However, these experimental protocols 
failed to differentiate between physical damage to the 
hyphal network and indirect changes to the soil environ- 
ment as a result of the disturbance. A number of studies 
have shown that soil conditions play a critical role in the 
growth of the hyphae of VAM fungi (e.g. Graham et al. 
1982; Abbott et al. 1984; Abbott and Robson 1985). 
Consequently, the post-disturbance reduction in infec- 
tivity of the external hyphal network may be due in part 
to exposure of hyphal fragments to unfavourable condi- 
tions for germination and/or colonization caused by re- 
distribution of soil. 

Another factor which may have contributed to the 
failure of hyphal fragments to produce infection is ino- 
culum density. It has been demonstrated that increased 
inoculum dosage results in increased percentage root 
colonization (e.g. Daft and Nicolson 1969; Sanders and 
Sheikh 1983; Wilson and Trinick 1983; Wilson 1984). 
The main effect of increasing the inoculum density ap- 
pears to be to increase the rate of development of infec- 
tion. It has been proposed that the increase in the rate of 
infection results from an increase in the rate of forma- 
tion of primary points of infection (Wilson and Trinick 
1983). It was not known how much hyphal inoculum 
was required to initiate VAM. Additionally, the hyphae 
may have included species other than VAM fungi, the 
hyphae may have been severely battered by the extrac- 
tion and inoculation process and, even if the hyphae 
were extracted satisfactorily, not enough hyphae may 
have been used to initiate infection. 

The spore fraction initiated VAM infection at the 42- 
day harvest. This coincided with the observed onset of 
VAM infection in the roots of bioassay seedlings grow- 
ing in the disturbed-soil blocks of experiment I. It must 
be noted that experiments I and II were not running 
concurrently. However, the observed coincidental onset 
of VAM infection suggests that spores may have been 
responsible in part for the initiation of VAM infection 
in the disturbed-soil blocks of experiment I. 

Both colonized root pieces and spores can be effec- 
tive propagules initiating VAM in host plants after top- 
soil disturbance. Thus, the ability of VAM fungi to per- 
sist in soil after disturbance may depend partly on the 
type of propagules formed. Studies investigating the re- 
lationship between soil disturbance and the colonization 
and sporulation of VAM fungi species are required be- 
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fore we can fully unde r s t and  the processes by which 
V A M  fungi  persist after topsoil  d i s turbance  and  stor- 
age. 
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